Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Acta Trop ; : 107212, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641222

RESUMO

Biomphalaria glabrata is a freshwater snail and the obligatory intermediate host of Schistosoma mansoni parasite, the etiologic agent of intestinal Schistosomiasis, in South America and Caribbean. Interestingly in such host-parasite interactions, compatibility varies between populations, strains or individuals. This observed compatibility polymorphism is based on a complex molecular-matching-phenotype, the molecular bases of which have been investigated in numerous studies, notably by comparing between different strains or geographical isolates or clonal selected snail lines. Herein we propose to decipher the constitutive molecular support of this interaction in selected non-clonal resistant and susceptible snail strain originating from the same natural population from Brazil and thus having the same genetic background. Thanks to a global RNAseq transcriptomic approach on whole snail, we identified a total of 328 differentially expressed genes between resistant and susceptible phenotypes among which 129 were up-regulated and 199 down-regulated. Metabolomic studies were used to corroborate the RNAseq results. The activation of immune genes and specific metabolic pathways in resistant snails might provide them with the capacity to better respond to parasite infection.

2.
Proc Natl Acad Sci U S A ; 120(40): e2305195120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751557

RESUMO

Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.


Assuntos
Coinfecção , Ostreidae , Animais , Humanos , Ecossistema , Bioensaio , Comportamento Cooperativo
3.
Cell Rep Methods ; 3(7): 100535, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533651

RESUMO

The identification and characterization of genomic safe harbor sites (GSHs) can facilitate consistent transgene activity with minimal disruption to the host cell genome. We combined computational genome annotation and chromatin structure analysis to predict the location of four GSHs in the human blood fluke, Schistosoma mansoni, a major infectious pathogen of the tropics. A transgene was introduced via CRISPR-Cas-assisted homology-directed repair into one of the GSHs in the egg of the parasite. Gene editing efficiencies of 24% and transgene-encoded fluorescence of 75% of gene-edited schistosome eggs were observed. The approach advances functional genomics for schistosomes by providing a tractable path for generating transgenics using homology-directed, repair-catalyzed transgene insertion. We also suggest that this work will serve as a roadmap for the development of similar approaches in helminths more broadly.


Assuntos
Edição de Genes , Schistosoma mansoni , Animais , Humanos , Schistosoma mansoni/genética , Transgenes/genética , Animais Geneticamente Modificados/genética
4.
Front Immunol ; 13: 956871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131936

RESUMO

The freshwater snail Biomphalaria glabrata is an intermediate host of Schistosoma mansoni, the agent of human intestinal schistosomiasis. However, much is to be discovered about its innate immune system that appears as a complex black box, in which the immune cells (called hemocytes) play a major role in both cellular and humoral response towards pathogens. Until now, hemocyte classification has been based exclusively on cell morphology and ultrastructural description and depending on the authors considered from 2 to 5 hemocyte populations have been described. In this study, we proposed to evaluate the hemocyte heterogeneity at the transcriptomic level. To accomplish this objective, we used single cell RNA sequencing (scRNAseq) technology coupled to a droplet-based system to separate hemocytes and analyze their transcriptome at a unique cell level in naive Biomphalaria glabrata snails. We were able to demonstrate the presence of 7 hemocyte transcriptomic populations defined by the expression of specific marker genes. As a result, scRNAseq approach showed a high heterogeneity within hemocytes, but provides a detailed description of the different hemocyte transcriptomic populations in B. glabrata supported by distinct cellular functions and lineage trajectory. As a main result, scRNAseq revealed the 3 main population as a super-group of hemocyte diversity but, on the contrary, a great hemocytes plasticity with a probable capacity of hemocytes to engage to different activation pathways. This work opens a new field of research to understand the role of hemocytes particularly in response to pathogens, and towards S. mansoni parasites.


Assuntos
Biomphalaria , Esquistossomose mansoni , Animais , Biomphalaria/parasitologia , Hemócitos , Humanos , Schistosoma mansoni , Esquistossomose mansoni/metabolismo , Análise de Sequência de RNA , Caramujos
5.
Microbiome ; 10(1): 85, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659369

RESUMO

BACKGROUND: The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question. RESULTS: Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one. Combining microbiota, transcriptomic, genetic, and epigenetic analyses, we show that the microbial exposure induced changes in epigenetic marks and a reprogramming of immune gene expression leading to long-term and intergenerational immune protection against POMS. CONCLUSIONS: We anticipate that this protection likely extends to additional pathogens and may prove to be an important new strategy for safeguarding oyster aquaculture efforts from infectious disease. tag the videobyte/videoabstract in this section Video Abstract.


Assuntos
Crassostrea , Microbiota , Animais , Aquicultura , Crassostrea/genética , Sistema Imunitário , Transcriptoma
6.
Methods Mol Biol ; 2505: 223-240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732948

RESUMO

DNA methylation is the most studied epigenetic mark in both plants and animals. The gold standard for assaying genome-wide DNA methylation at single-base resolution is whole-genome bisulfite sequencing (WGBS). Here, we describe an improved procedure for WGBS and original bioinformatic workflows applied to unravel tissue-specific variations of the methylome in relation to gene expression and accumulation of secondary metabolites in the medicinal plant Catharanthus roseus.


Assuntos
Epigenoma , Sequenciamento de Nucleotídeos em Larga Escala , Animais , DNA/genética , Metilação de DNA , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Especificidade de Órgãos/genética , Análise de Sequência de DNA/métodos , Sulfitos
7.
Front Cell Dev Biol ; 10: 794650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295851

RESUMO

Snail-borne parasitic diseases represent an important challenge to human and animal health. Control strategies that target the intermediate snail host has proved very effective. Epigenetic mechanisms are involved in developmental processes and therefore play a fundamental role in developmental variation. DNA methylation is an important epigenetic information carrier in eukaryotes that plays a major role in the control of chromatin structure. Epigenome editing tools have been instrumental to demonstrate functional importance of this mark for gene expression in vertebrates. In invertebrates, such tools are missing, and the role of DNA methylation remains unknown. Here we demonstrate that methylome engineering can be used to modify in vivo the CpG methylation level of a target gene in the freshwater snail Biomphalaria glabrata, intermediate host of the human parasite Schistosoma mansoni. We used a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails.

8.
Wellcome Open Res ; 7: 133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37521535

RESUMO

In living cells, the genetic information stored in the DNA sequence is always associated with chromosomal and extra-chromosomal epigenetic information. Chromatin is formed by the DNA and associated proteins, in particular histones. Covalent histone modifications are important bearers of epigenetic information and as such have been increasingly studied since about the year 2000. One of the principal techniques to gather information about the association between DNA and modified histones is chromatin immunoprecipitation (ChIP), also combined with massive sequencing (ChIP-Seq). Automated ChIPmentation procedure is a convenient alternative to native chromatin immunoprecipitation (N-ChIP). It is now routinely used for ChIP-Seq in many model species, using in general roughly 10 6 cells per experiment. Such high cell numbers are sometimes difficult to produce. Using the human parasite Schistosoma mansoni, whose production requires sacrificing animals and should therefore be kept to a minimum, we show here that automated ChIPmentation is suitable for limited biological material. We define the operational limit as ≥20,000 Schistosoma cells. We also present a streamlined protocol for the preparation of ChIP input libraries.

9.
PLoS Negl Trop Dis ; 15(12): e0010062, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941866

RESUMO

Schistosomes cause schistosomiasis, the world's second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.


Assuntos
Genoma Helmíntico , Hibridização Genética , Schistosoma haematobium/crescimento & desenvolvimento , Schistosoma haematobium/genética , Schistosoma/crescimento & desenvolvimento , Schistosoma/genética , Animais , Tamanho Corporal , Bulinus/parasitologia , Quimera/anatomia & histologia , Quimera/genética , Quimera/crescimento & desenvolvimento , Vetores de Doenças , Europa (Continente) , Feminino , Humanos , Masculino , Schistosoma/anatomia & histologia , Schistosoma haematobium/anatomia & histologia , Esquistossomose/parasitologia , Caramujos/parasitologia
10.
Epigenetics Chromatin ; 14(1): 48, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702322

RESUMO

BACKGROUND: 5-Methylcytosine (5mC) is an important epigenetic mark in eukaryotes. Little information about its role exists for invertebrates. To investigate the contribution of 5mC to phenotypic variation in invertebrates, alteration of methylation patterns needs to be produced. Here, we apply new non-nucleoside DNA methyltransferase inhibitors (DNMTi) to introduce aleatory changes into the methylome of mollusk species. RESULTS: Flavanone inhibitor Flv1 was efficient in reducing 5mC in the freshwater snails Biomphalaria glabrata and Physa acuta, and to a lesser degree, probably due to lower stability in sea water, in the oyster Crassostrea gigas. Flv1 has no toxic effects and significantly decreased the 5mC level in the treated B. glabrata and in its offspring. Drug treatment triggers significant variation in the shell height in both generations. A reduced representation bisulfite-sequencing method called epiGBS corroborates hypomethylation effect of Flv1 in both B. glabrata generations and identifies seven Differential Methylated Regions (DMR) out of 32 found both in Flv1-exposed snails and its progeny, from which 5 were hypomethylated, demonstrating a multigenerational effect. By targeted bisulfite sequencing, we confirmed hypomethylation in a locus and show that it is associated with reduced gene expression. CONCLUSIONS: Flv1 is a new and efficient DNMTi that can be used to induce transient and heritable modifications of the epigenetic landscape and phenotypic traits in mollusks, a phylum of the invertebrates in which epigenetics is understudied.


Assuntos
Biomphalaria , Animais , Biomphalaria/genética , Metilação de DNA , Epigênese Genética , Epigenoma , Moluscos
11.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469545

RESUMO

A large portion of animal and plant genomes consists of noncoding DNA. This part includes tandemly repeated sequences and gained attention because it offers exciting insights into genome biology. We investigated satellite-DNA elements of the platyhelminth Schistosoma mansoni, a parasite with remarkable biological features. Schistosoma mansoni lives in the vasculature of humans causing schistosomiasis, a disease of worldwide importance. Schistosomes are the only trematodes that have evolved separate sexes, and the sexual maturation of the female depends on constant pairing with the male. The schistosome karyotype comprises eight chromosome pairs, males are homogametic (ZZ) and females are heterogametic (ZW). Part of the repetitive DNA of S. mansoni are W-elements (WEs), originally discovered as female-specific satellite DNAs in the heterochromatic block of the W-chromosome. Based on new genome and transcriptome data, we performed a reanalysis of the W-element families (WEFs). Besides a new classification of 19 WEFs, we provide first evidence for stage-, sex-, pairing-, gonad-, and strain-specific/preferential transcription of WEs as well as their mobile nature, deduced from autosomal copies of full-length and partial WEs. Structural analyses suggested roles as sources of noncoding RNA-like hammerhead ribozymes, for which we obtained functional evidence. Finally, the variable WEF occurrence in different schistosome species revealed remarkable divergence. From these results, we propose that WEs potentially exert enduring influence on the biology of S. mansoni. Their variable occurrence in different strains, isolates, and species suggests that schistosome WEs may represent genetic factors taking effect on variability and evolution of the family Schistosomatidae.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Schistosoma mansoni , Animais , Biologia , DNA Satélite/genética , Feminino , Masculino , Schistosoma mansoni/genética , Cromossomos Sexuais
12.
New Phytol ; 232(1): 80-97, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34128549

RESUMO

Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.


Assuntos
Populus , Metilação de DNA/genética , Secas , Regulação da Expressão Gênica de Plantas , Meristema , Populus/genética , Interferência de RNA
13.
PLoS Negl Trop Dis ; 15(5): e0009363, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33945524

RESUMO

Species usually develop reproductive isolation mechanisms allowing them to avoid interbreeding. These preventive barriers can act before reproduction, "pre-zygotic barriers", or after reproduction, "post-zygotic barriers". Pre-zygotic barriers prevent unfavourable mating, while post-zygotic barriers determine the viability and selective success of the hybrid offspring. Hybridization in parasites and the underlying reproductive isolation mechanisms maintaining their genetic integrity have been overlooked. Using an integrated approach this work aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haematobium x S. bovis crosses. These two co-endemic species cause schistosomiasis, one of the major debilitating parasitic diseases worldwide, and can hybridize naturally. Using mate choice experiments we first tested if a specific mate recognition system exists between both species. Second, using RNA-sequencing we analysed differential gene expression between homo- and hetero-specific pairing in male and female adult parasites. We show that homo- and hetero-specific pairing occurs randomly between these two species, and few genes in both sexes are affected by hetero-specific pairing. This suggests that i) mate choice is not a reproductive isolating factor, and that ii) no pre-zygotic barrier except spatial isolation "by the final vertebrate host" seems to limit interbreeding between these two species. Interestingly, among the few genes affected by the pairing status of the worms, some can be related to pathways affected during male and female interactions and may also present interesting candidates for species isolation mechanisms and hybridization in schistosome parasites.


Assuntos
Mosaicismo/embriologia , Reprodução/fisiologia , Isolamento Reprodutivo , Schistosoma haematobium/classificação , Animais , Cricetinae , Feminino , Regulação da Expressão Gênica , Especiação Genética , Masculino , Schistosoma haematobium/embriologia , Schistosoma haematobium/crescimento & desenvolvimento
14.
Front Immunol ; 12: 635131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868258

RESUMO

Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail's immune arsenal.


Assuntos
Biomphalaria/genética , Vetores de Doenças , Evolução Molecular , Família Multigênica , Proteínas Citotóxicas Formadoras de Poros/genética , Schistosoma mansoni/patogenicidade , Animais , Biomphalaria/metabolismo , Biomphalaria/parasitologia , Duplicação Gênica , Variação Genética , Interações Hospedeiro-Parasita , Filogenia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Especificidade da Espécie
15.
PLoS Pathog ; 17(2): e1009313, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544762

RESUMO

Hybridization is a fascinating evolutionary phenomenon that raises the question of how species maintain their integrity. Inter-species hybridization occurs between certain Schistosoma species that can cause important public health and veterinary issues. In particular hybrids between Schistosoma haematobium and S. bovis associated with humans and animals respectively are frequently identified in Africa. Recent genomic evidence indicates that some S. haematobium populations show signatures of genomic introgression from S. bovis. Here, we conducted a genomic comparative study and investigated the genomic relationships between S. haematobium, S. bovis and their hybrids using 19 isolates originating from a wide geographical range over Africa, including samples initially classified as S. haematobium (n = 11), S. bovis (n = 6) and S. haematobium x S. bovis hybrids (n = 2). Based on a whole genomic sequencing approach, we developed 56,181 SNPs that allowed a clear differentiation of S. bovis isolates from a genomic cluster including all S. haematobium isolates and a natural S. haematobium-bovis hybrid. All the isolates from the S. haematobium cluster except the isolate from Madagascar harbored signatures of genomic introgression from S. bovis. Isolates from Corsica, Mali and Egypt harbored the S. bovis-like Invadolysin gene, an introgressed tract that has been previously detected in some introgressed S. haematobium populations from Niger. Together our results highlight the fact that introgression from S. bovis is widespread across S. haematobium and that the observed introgression is unidirectional.


Assuntos
Genoma , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Schistosoma haematobium/genética , Schistosoma/genética , Esquistossomose/parasitologia , África , Animais , Caenorhabditis elegans , Schistosoma/classificação , Schistosoma/isolamento & purificação , Schistosoma haematobium/isolamento & purificação , Esquistossomose/genética , Esquistossomose/patologia , Especificidade da Espécie , Sequenciamento Completo do Genoma
16.
Methods Mol Biol ; 2151: C1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970301

RESUMO

Correction to: Chapter 9 in: David J. Timson (ed.), Schistosoma mansoni: Methods and Protocols, Methods in Molecular Biology, vol. 2151.

17.
Front Microbiol ; 11: 1579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754139

RESUMO

Juvenile Pacific oysters (Crassostrea gigas) are subjected to recurrent episodes of mass mortalities that constitute a threat for the oyster industry. This mortality syndrome named "Pacific Oyster Mortality Syndrome" (POMS) is a polymicrobial disease whose pathogenesis is initiated by a primary infection by a variant of an Ostreid herpes virus named OsHV-1 µVar. The characterization of the OsHV-1 genome during different disease outbreaks occurring in different geographic areas has revealed the existence of a genomic diversity for OsHV-1 µVar. However, the biological significance of this diversity is still poorly understood. To go further in understanding the consequences of OsHV-1 diversity on POMS, we challenged five biparental families of oysters to two different infectious environments on the French coasts (Atlantic and Mediterranean). We observed that the susceptibility to POMS can be different among families within the same environment but also for the same family between the two environments. Viral diversity analysis revealed that Atlantic and Mediterranean POMS are caused by two distinct viral populations. Moreover, we observed that different oyster families are infected by distinct viral populations within a same infectious environment. Altogether these results suggest that the co-evolutionary processes at play between OsHV-1 µVar and oyster populations have selected a viral diversity that could facilitate the infection process and the transmission in oyster populations. These new data must be taken into account in the development of novel selective breeding programs better adapted to the oyster culture environment.

18.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825765

RESUMO

Catharanthus roseus produces a wide spectrum of monoterpene indole alkaloids (MIAs). MIA biosynthesis requires a tightly coordinated pathway involving more than 30 enzymatic steps that are spatio-temporally and environmentally regulated so that some MIAs specifically accumulate in restricted plant parts. The first regulatory layer involves a complex network of transcription factors from the basic Helix Loop Helix (bHLH) or AP2 families. In the present manuscript, we investigated whether an additional epigenetic layer could control the organ-, developmental- and environmental-specificity of MIA accumulation. We used Whole-Genome Bisulfite Sequencing (WGBS) together with RNA-seq to identify differentially methylated and expressed genes among nine samples reflecting different plant organs and experimental conditions. Tissue specific gene expression was associated with specific methylation signatures depending on cytosine contexts and gene parts. Some genes encoding key enzymatic steps from the MIA pathway were found to be simultaneously differentially expressed and methylated in agreement with the corresponding MIA accumulation. In addition, we found that transcription factors were strikingly concerned by DNA methylation variations. Altogether, our integrative analysis supports an epigenetic regulation of specialized metabolisms in plants and more likely targeting transcription factors which in turn may control the expression of enzyme-encoding genes.


Assuntos
Catharanthus/crescimento & desenvolvimento , Catharanthus/genética , Catharanthus/metabolismo , Metilação de DNA , Alcaloides Indólicos/metabolismo , Catharanthus/citologia , Enzimas/genética , Enzimas/metabolismo , Epigenoma , Regulação da Expressão Gênica de Plantas , Monoterpenos/metabolismo , Fotossíntese/genética , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/citologia , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
19.
Methods Mol Biol ; 2151: 93-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32451999

RESUMO

DNA-binding proteins play critical roles in many major processes such as development and sexual biology of Schistosoma mansoni and are important for the pathogenesis of schistosomiasis. Chromatin immunoprecipitation (ChIP) experiments followed by sequencing (ChIP-seq) are useful to characterize the association of genomic regions with posttranslational chemical modifications of histone proteins. Challenges in the standard ChIP protocol have motivated recent enhancements in this approach, such as reducing the number of cells required and increasing the resolution. In this chapter, we describe the latest advances made by our group in the ChIP methods to improve the standard ChIP protocol to reduce the number of input cells required and to increase the resolution and robustness of ChIP in S. mansoni.


Assuntos
Histonas/metabolismo , Parasitos/metabolismo , Processamento de Proteína Pós-Traducional , Schistosoma mansoni/metabolismo , Animais , Anticorpos Anti-Helmínticos/metabolismo , Fracionamento Celular , Precipitação Química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , DNA/isolamento & purificação , Humanos , Sefarose , Proteína Estafilocócica A
20.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156821

RESUMO

Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide.IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.


Assuntos
Crassostrea/genética , Crassostrea/imunologia , Infecções por Vírus de DNA/imunologia , Vírus de DNA/imunologia , Imunidade Inata , Animais , Infecções por Vírus de DNA/genética , Vírus de DNA/patogenicidade , Perfilação da Expressão Gênica , Poli I-C/imunologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...